迭代次数 Resources

Showing items tagged with "迭代次数"

Total Variation Denoising Function: J = tv(I, iter, dt, ep, lam, I0) Input Parameters: I - Grayscale image, iter - Number of iterations [Default: 1], dt - Time step size [Default: 0.2], ep - Epsilon enhancement parameter [Default: 1], lam - Fidelity term lambda [Default: 0], I0 - Input noisy image [Default: I0=I] (Values in brackets indicate default parameters)

MATLAB 288 views Tagged

The 2D Matching Pursuit algorithm achieves precise image reconstruction using fewer subspace comparisons, with progressively improved approximation to the source image as iteration count increases. Implementation typically involves greedy iterative selection of optimal dictionary atoms and residual updates.

MATLAB 233 views Tagged