Algorithm Process:
1. Parameter Configuration
Random generation of initial population - population = initpop(popsize, chromlength)
Fault type encoding, each row represents: code(1,:) for normal; code(2,:) for 50%; code(3,:) for 1.5%.
Actual fault measurement data encoding, referred to as Unnormalcode, 188%
4. Iteration Initialization (M):
1) Calculate objective function value: Euclidean distance [objvalue] = calobjvalue(population, i)
2) Calculate fitness value for each individual in population: fitvalue = calfitvalue(objvalue)
MATLAB
225 views
Tagged