When avoiding the use of correlation matrices associated with estimating input signal vectors to accelerate LMS algorithm convergence, variable step-size methods can shorten the adaptive convergence process. A primary approach is the Normalized LMS (NLMS) algorithm. The variable step-size update formula can be expressed as W(n+1) = w(n) + e(n)x(n) = w(n) + [step_size], where [step_size] = e(n)x(n) represents the adjustment term for iterative filter weight vector updates. To achieve rapid convergence, appropriate selection of the variable step-size is essential. One potential strategy involves minimizing the instantaneous squared error as much as possible, using it as a simplified estimate of the Mean Squared Error (MSE), which constitutes the foundational principle of the LMS algorithm.
MATLAB
271 views
Tagged