Statistical Calculator GUI Implementation
- Login to Download
- 1 Credits
Resource Overview
Detailed Documentation
The following complete code includes all necessary functions and variables, along with comments and docstrings to facilitate understanding and usage by others.
```python
# Import required libraries for numerical operations
import numpy as np
import pandas as pd
# Define a function to calculate mean using NumPy's optimized implementation
def calculate_mean(arr):
"""
Calculate the arithmetic mean of an array
Parameters:
arr (array): Input array for mean calculation
Returns:
float: Mean value of the array
Algorithm: Utilizes NumPy's vectorized mean computation for efficiency
"""
return np.mean(arr)
# Define median calculation function with proper array handling
def calculate_median(arr):
"""
Calculate the median value of an array
Parameters:
arr (array): Input array for median calculation
Returns:
float: Median value of the array
Implementation: Uses NumPy's median function which automatically handles
both even and odd-length arrays
"""
return np.median(arr)
# Standard deviation function with population standard deviation calculation
def calculate_std(arr):
"""
Calculate the standard deviation of an array
Parameters:
arr (array): Input array for standard deviation calculation
Returns:
float: Standard deviation of the array
Note: By default, NumPy's std() calculates population standard deviation (ddof=0)
"""
return np.std(arr)
# Variance calculation function using mathematical variance formula
def calculate_variance(arr):
"""
Calculate the variance of an array
Parameters:
arr (array): Input array for variance calculation
Returns:
float: Variance of the array
Mathematical Basis: Variance measures the spread of data points
around the mean value
"""
return np.var(arr)
# Test code with sample array to verify all statistical functions
if __name__ == '__main__':
arr = np.array([1, 2, 3, 4, 5])
print("Array:", arr)
print("Mean:", calculate_mean(arr))
print("Median:", calculate_median(arr))
print("Standard Deviation:", calculate_std(arr))
print("Variance:", calculate_variance(arr))
```
This code provides a solid foundation for statistical calculations and can be easily integrated into GUI applications. The functions demonstrate proper use of NumPy's mathematical operations for efficient numerical computations.
- Login to Download
- 1 Credits