Statistical Calculator GUI Implementation

Resource Overview

Complete Python code implementation with comprehensive statistical functions and detailed documentation

Detailed Documentation

The following complete code includes all necessary functions and variables, along with comments and docstrings to facilitate understanding and usage by others.

```python

# Import required libraries for numerical operations

import numpy as np

import pandas as pd

# Define a function to calculate mean using NumPy's optimized implementation

def calculate_mean(arr):

"""

Calculate the arithmetic mean of an array

Parameters:

arr (array): Input array for mean calculation

Returns:

float: Mean value of the array

Algorithm: Utilizes NumPy's vectorized mean computation for efficiency

"""

return np.mean(arr)

# Define median calculation function with proper array handling

def calculate_median(arr):

"""

Calculate the median value of an array

Parameters:

arr (array): Input array for median calculation

Returns:

float: Median value of the array

Implementation: Uses NumPy's median function which automatically handles

both even and odd-length arrays

"""

return np.median(arr)

# Standard deviation function with population standard deviation calculation

def calculate_std(arr):

"""

Calculate the standard deviation of an array

Parameters:

arr (array): Input array for standard deviation calculation

Returns:

float: Standard deviation of the array

Note: By default, NumPy's std() calculates population standard deviation (ddof=0)

"""

return np.std(arr)

# Variance calculation function using mathematical variance formula

def calculate_variance(arr):

"""

Calculate the variance of an array

Parameters:

arr (array): Input array for variance calculation

Returns:

float: Variance of the array

Mathematical Basis: Variance measures the spread of data points

around the mean value

"""

return np.var(arr)

# Test code with sample array to verify all statistical functions

if __name__ == '__main__':

arr = np.array([1, 2, 3, 4, 5])

print("Array:", arr)

print("Mean:", calculate_mean(arr))

print("Median:", calculate_median(arr))

print("Standard Deviation:", calculate_std(arr))

print("Variance:", calculate_variance(arr))

```

This code provides a solid foundation for statistical calculations and can be easily integrated into GUI applications. The functions demonstrate proper use of NumPy's mathematical operations for efficient numerical computations.